Geochemical heterogeneity and element mobility in deeply subducted oceanic crust; insights from high-pressure mafic rocks from New Caledonia

نویسندگان

  • Carl Spandler
  • Jörg Hermann
  • Richard Arculus
  • John Mavrogenes
چکیده

Bulk-rock major and trace element geochemistry of a range of eclogite, garnet blueschist and garnet amphibolite rocks from northern New Caledonia has been determined in order to geochemically characterise subducted oceanic crust. The rocks experienced peak metamorphic conditions of 1.9 GPa and 600 jC and represent excellent samples of oceanic crust that was subducted to depths of approximately 60 km. The rocks can be divided into seven rock types that respectively have geochemical characteristics of enriched and normal mid-ocean ridge basalt, back-arc basin basalt, alkaline basalt, plagioclase-rich cumulate, seafloor-altered basalt and Fe–Ti basalt. All of the samples studied represent a single slice of oceanic crust interpreted to have formed in a back-arc or marginal basin setting. Examination of modern oceanic crust suggests that most subducting crust also contains a diverse range of mafic rock-types. The presence of minor amounts of alkaline and seafloor-altered basalts in the slab can greatly influence the recycling of incompatible elements and the depth of fluid release during subduction. Comparison of the high-grade metamorphic rocks with equivalent igneous rocks from western New Caledonia demonstrates that the main chemical variations of the rocks are related to differences in their magmatic history and to different degrees of seafloor alteration, whereas high-pressure metamorphism produced only minor changes. There is evidence for some depletion of LILE and B during subduction in a few of the analysed samples. However, most of the blueschists and eclogites with protoliths showing high LILE contents such as the back-arc basin and alkaline basalts still contain high LILE contents of 10– 100 times the amount found in normal mid ocean ridge basalts. Therefore, even fluid mobile elements (B, LILE) may be efficiently subducted to sub-arc depths. Trace elements are most likely to be removed from the slab in regions of elevated temperature or in zones of intense fluid–rock interaction or partial melting. In contrast to the trace elements, large volumes of fluid are liberated from mafic rocks prior to eclogite-facies metamorphism, providing evidence for a decoupling of fluid and trace element release in subducted oceanic crust. D 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petrological and geodynamical constraints of Chaldoran basaltic rocks, NW of Iran: evidence from geochemical characteristics

Chaldoran area in NW of Iran has Mesozoic oceanic crust basement. The studied rocks of this region can be divided into three groups: ophiolitic gabbros and pillow lavas, ophiolitic volcanoclastics and Eocene lava flows. Ophiolitic mafic rocks show continental volcanic arc natures and Eocene lava flow shows OIB-like nature. During the Mesozoic,the Chaldoran region was situated in the active cont...

متن کامل

GEOCHEMICAL AND PETROLOGICAL CHARACTERISTICS OF DEH SIAHAN GRANITIC ROCKS, SOUTHWEST OF KERMAN, IRAN: DATA BEARING ON GENESIS

The Oligocene-Miocene granitic rocks of Deh Siahan, part of central Iranian volcanic belt, are intruded into Eocene volcano-sedimentary complex where their contact is marked by albite-epidote hornblende hornfels facies and granitic apophyses. The granitic rocks show enhanced LIL element abundances and low HFS/LIL ratios. Geochemical data, various trace element discriminant diagrams, enhanced Y/...

متن کامل

Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction

Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and it...

متن کامل

Slab breakoff A model for syncollisional magmatism and tectonics in the Alps

Slab breakoff is the buoyancy-driven detachment of subducted oceanic lithosphere from the light continental lithosphere that follows it during continental collision. In a recent paper Davies and von Blanckenburg [1994] have assessed the physical conditions leading to breakoff by quantitative thermomechanical modeling and have predicted various consequences in the evolution of mountain belts. Br...

متن کامل

Remnants of Eoarchean continental crust derived from a subducted proto-arc

Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth's oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004